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 ABSTRACT 

 

Transplant glomerulopathy (TG) is associated with rapid decline in glomerular filtration rate and poor 

outcome. We utilized low-density arrays with a novel probabilistic analysis to characterize relationships 

between gene transcripts and the development of TG in allograft recipients. Retrospective review 

identified TG in 10.8% of 963 core biopsies from 166 patients; patients with stable function (SF) were 

studied for comparison. The biopsies were analyzed for expression of 87 genes related to immune 

function and fibrosis using real-time PCR, and a Bayesian model was generated and validated to predict 

histopathology based on gene expression. A total of 57 individual genes were increased in TG compared 

with SF biopsies (p<0.05). The Bayesian analysis identified critical relationships between ICAM-1, IL-

10, CCL3, CD86, VCAM-1, MMP-9, MMP-7, and LAMC2 and allograft pathology. Moreover, Bayesian 

models predicted TG when derived from either immune function {AUC (95% CI) of 0.875 (0.675-0.999), 

p=0.004} or fibrosis {AUC (95% CI) of 0.859 (0.754-0.963), p<0.001} gene networks.  Critical pathways 

in the Bayesian models were also analyzed using the Fisher exact test and had p-values < 0.005. This 

study demonstrates that evaluating quantitative gene expression profiles with Bayesian modeling can 

identify significant transcriptional associations that have the potential to support the diagnostic capability 

of allograft histology. This integrated approach has broad implications in the field of transplant 

diagnostics.
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INTRODUCTION 

 

Long-term kidney allograft function continues to improve only modestly, despite dramatic improvements 

in acute rejection rates and short term patient and graft survivals.
1
In spite of its limitations, measurement 

of serum creatinine remains the primary monitoring modality following kidney transplantation. 

Significant changes in serum creatinine, and/or the development of proteinuria, result in a series of 

maneuvers to define the many potential etiologies of acute and chronic allograft dysfunction. Allograft 

biopsy is the “gold-standard” of these maneuvers, although morphologic analysis may not easily 

distinguish these etiologies. Furthermore, the analysis may be limited in regards to prognostic importance 

and functional outcome. Thus, identification of biomarkers of allograft failure and the development of 

tools for their interpretation is of critical interest, both in providing disease detection in a more sensitive 

and specific fashion, and in allowing sufficient lead time for intervention. Additionally, such markers may 

allow for risk assessment and medical-regimen tailoring that is personalized to provide optimum 

outcomes. 

 

Transplant glomerulopathy (TG) is a disease of the kidney allograft initiated by endothelial injury. 

Morphologically, there is widening of the subendothelial space with accumulation of debris, mesangial 

interpositioning, and matrix deposition in the glomerular capillary wall, as well as capillary wall double-

contouring in the absence of immune complex deposition.
2
 Electron microscopy may show endothelial 

cell separation from the glomerular basement membrane prior to light microscopic changes. The etiology 

of TG is under considerable scrutiny. Prior studies implicated an antibody mediated response
3-5

, but this 

has not been consistently demonstrated.
6, 7

 Accompanying this lesion may be evidence of chronic injury, 

including interstitial fibrosis and tubular atrophy (IF/TA), the hallmarks of chronic allograft nephropathy.
8
 

Clinical presentation often occurs a year or more after transplantation, although in the context of protocol 

kidney biopsies, light microscopic changes may be seen earlier, with associated proteinuria, hypertension, 

and a progressive decline in function culminating in graft loss.
9
 Importantly, there is no specific effective 
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therapeutic strategy beyond augmentation of immunosuppression. Thus, identifying pathogenic mediators 

not only for therapeutic purposes but also for early identification may lead to improved outcomes. 

 

In this study, we assess the potential of a novel diagnostic method utilizing custom low density gene 

expression arrays and machine learning algorithms in an effort to determine the transcriptional features 

associated with TG and to begin to identify biomarkers that may be indicative of TG. While there has 

been some research in identifying biomarkers of TG, we have yet to see the evaluation of a systems 

biology approach to this problem. We focused on transcripts that have been associated with other forms 

of acute and chronic renal allograft injury in kidney allograft recipients with the intent of evaluating a 

systems biology modeling approach. Initial data analysis using conventional statistical methods 

confirmed the proinflammatory state of this lesion.
10

 Incorporation of these data utilizing machine-

learning software, however, derived statistically significant yet substantially novel associations between 

individual transcripts.  We performed this analysis specifically to assess the potential value of a graphical, 

hierarchical model of conditional dependence in generating novel hypotheses and providing guidance in 

patient classification.  Moreover, the resulting model provides insight into the probable pathogenesis of 

TG and a set of potential biomarkers to test and characterize recipients at risk for disease. These results 

highlight the hypothesis-generating potential of this method by elucidating potential pathways for 

investigation and the decision-supportive utility of defined, quantitative classification models of disease 

versus health states. 

 

METHODS 

 

Patient selection and evaluation 

Protocols were approved by the Institutional Review Board of the National Institutes of Health and 

included informed consent. Retrospective review of 963 renal transplant core biopsies (166 patients) 

identified TG in 20 biopsies (18 patients; 10.8%). A cohort of 32 biopsies (19 patients) of stable function 
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(SF) allografts was studied for comparison. SF was defined as at least 6 months post-transplant without 

change in renal function and the absence of any significant histological or clinical abnormalities.  

 

Immunosuppression included induction in 94.6% (n=35) using rabbit anti-thymocyte globulin (40.5%; 

n=15), Alemtuzumab (29.7%; n=11), Daclizumab (18.9%; n=7), or solumedrol alone (5.4%; n=2).  

Patients were maintained on monotherapy with tacrolimus or sirolimus (56.8%; n=21), triple 

immunosuppressive therapy including tacrolimus or sirolimus, MMF, and prednisone (29.7%; n=11), or 

other maintenance regimen variations (14.5%; n=5).  

 

Patients were routinely screened post-transplant for anti-HLA antibodies with solid phase Class I and II 

ELISA or multi-antigen synthetic flow bead (Tepnel, Stamford, CT) testing with the Luminex system 

(Luminex Inc., Austin, TX). Positive sera were subsequently tested using specific HLA antigen-coated 

flow beads (One Lambda, Inc., Canoga Park, CA). 

 

Biopsy acquisition, preparation, and evaluation 

Protocol biopsies were obtained routinely at time of transplantation and at 1, 6, 12, 36, and in some cases 

60 months. A portion of the cortex was snap frozen as previously described.
11

 The percent cortex was 

obtained for each sample for validation. For all biopsies this was 75.71±25.52. The remaining portions 

were fixed in formalin, sectioned, and stained.  

 

All biopsies were evaluated in masked fashion by a single dedicated pathologist and scored using the 

Banff classification.
12-14

 The diagnosis of TG was based on the presence of glomerular basement 

membrane duplication and severity scored on the percentage of glomerular peripheral capillary loops 

involved in affected, non-sclerotic glomeruli.
13

 Patients with duplication of the glomerular basement 

membrane due to recurrent disease were excluded. C4d staining was performed in 43/52 samples using an 

immunoperoxidase technique. 
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Quantitative real-time polymerase chain reaction (qPCR) 

RNA was extracted and converted to cDNA.
15

 cDNA (100ng) was used for qPCR using a Low Density 

Array (Applied Biosystems Inc., Foster City, CA).
16

 Two groups of targets (Table 1) were quantitated: 43 

transcripts related to general immune function (Gene Panel 1 – GP1) and 45 transcripts related to allograft 

fibrosis pathways (Gene Panel 2 – GP2). Each target was analyzed in quadruplicate. 18S ribosomal RNA 

was used as an internal control. Individual samples were compared with pooled cDNA from live donors 

undergoing open donor nephrectomy. Transcript quantification was derived using the comparative 

threshold cycle method,
16

 and reported as n-fold difference. 

 

Statistical Analysis 

SF and TG patient clinical variables were compared and analyzed using SPSS (SPSS 16.0, SPSS Inc., 

Chicago, IL). Associations between categorical variables were studied with Fisher exact test or χ
2
test, as 

appropriate. Continuous variables of normally distributed data were assessed with the Student t-test. 

Relative-fold expression data were compared using independent sample Student t-test. A two-tailed p 

value < 0.05 was considered statistically significant. 

 

Multivariate dependence relationships were also analyzed with FasterAnalytics
TM

 modeling software 

(Decision Q, Washington, DC), a machine learning software package used to develop graphical models of 

conditional dependence (Bayesian networks). Machine learned Bayesian networks identify conditional 

dependence between variables and present this structure to the user in an intuitive, graphical format. 

Preliminary modeling included diagnosis (DX; TG or SF), C4d staining grade (Banff C4d; 0, 1, 2, or 3), 

and each gene of either GP1 or GP2. Quantitative transcript relative-expression data were categorized by 

distribution into three equal probability density groups. Models were derived in step-wise iterations until 

the optimal network was identified as determined by cross-validation and qualitative assessment against 

clinical experience and the literature. To evaluate robustness of the Bayesian models, 10% of the biopsy 
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data were randomly excluded from each dataset in 10 non-overlapping iterations for a 10-fold cross-

validation.
17

 To further validate the statistical significance of our findings, we used the directed graph 

produced by the model and performed a Fisher’s exact test to quantify the statistical significance of each 

arc on a bi-variate basis between the nodes at each end of the arc.  Series divided into the same reference 

ranges as in the Bayesian network and for each pair, a p-value was calculated using Fisher’s exact test. 

 

RESULTS 

 

Patient demographics and biopsy characteristics 

Patient demographics were matched between the SF and TG patients (Table 2). Patients with TG had 

higher mean pre-transplant peak PRA and were more likely to have had a prior transplant, but these 

associations were not statistically significant. However, patients with TG had a significantly higher 

incidence of post-transplant donor specific antibody (DSA) and graft loss, p<0.05, consistent with prior 

reported experiences.
5, 8

 

 

Mean creatinine at time of biopsy was significantly higher in TG (2.5 ±1.1 mg/dL) compared with SF (1.3 

±0.3 mg/dL) allografts (p<0.001). Significantly more biopsies from TG allografts were obtained for 

clinical cause (p=0.001; Table 3), and, not surprisingly, C4d immunostaining was more often positive 

in TG biopsies than in SF (p=0.013). By definition, the TG biopsies had a higher chronic 

glomerulopathy (CG) grade (2.7 ±0.5) than SF biopsies, p<0.001.  

 

Allograft transcriptional profile 

Thirty-two transcripts related to immune function were significantly (p<0.05) increased in TG compared 

with SF, suggesting upregulation of inflammatory pathways involving multiple immune mechanisms 

(Figure 1A-G). Moreover, twenty-five transcripts related to interstitial fibrosis were increased in TG 

compared with SF (p<0.05).  
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Graphical Bayesian network of conditional dependence in transcript expression  

Machine-learned Bayesian network modeling was used to identify conditional dependence relationships 

between gene transcript expression data and allograft pathology (TG versus SF as defined in Methods). 

GP1 and GP2 expression data were modeled independently and optimized relative to diagnosis. Below we 

focus on those genes found to be most interdependent on diagnosis within the generated networks. 

 

In GP1 (Figure 2A), ICAM-1, IL-10, CCL3, and CD86 shared the strongest conditional dependence with 

diagnosis in the machine-learned model.  To further validate our findings, we used the associations 

identified in the GP1 Bayesian network to perform Fisher exact testing and found the conditional 

dependence associations to be highly statistically significant, with all associations having a p-value of 

0.01 or less. (Table 4)  Similar to our findings above, multiple additional T-cell function, costimulatory, 

chemotaxis, and cytokine transcripts were also related to allograft pathology. In SF, relative transcript 

expression is lower within the network (Figure 2B); conversely, in TG the relative expression of these 

transcripts is generally higher than in the controls (Figure 2C). In this, the unsupervised, machine-learned 

Bayesian analysis has identified intriguing novel and potentially important relationships among the gene 

expression profiles and allograft pathology for further exploration and biological validation. 

 

This Bayesian network further enabled investigation of the possible influence of specific, coincident gene 

expression on allograft pathology. More specifically, classification model GP1 allowed us to estimate the 

probability of outcome in the study population by using available evidence and without necessitating a 

full understanding of the underlying biological pathways.  Setting the evidence of coincidentally elevated 

expression of ICAM-1 (≥1.84 fold), IL-10 (≥16.9 fold), and CCL3 (≥3.15 fold) increased the probability 

of TG to 99.67% as opposed to SF (Figure 3A). This served as a demonstration of allograft-outcome 

probability calculation using transplant-specific gene expression data and an internally cross-validated 

model. 
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With increased expression (>8.89 fold) of the costimulatory molecule CD86, multiple related transcripts 

are also increased as illustrated by the adjusted probability distributions throughout the network (Figure 

3B). In addition, by increasing only CD86 expression, the probability of TG also increased to 80.61%. 

This interactive, evidence-based feature of Bayesian network analysis facilitates elucidation of potentially 

novel biological pathways. 

 

Comparative transcript and histological Bayesian network probability of allograft pathology 

In the Bayesian model of GP2, VCAM-1, MMP-9, MMP-7, and LAMC2 are critically related to 

pathology (Figure 4A).  To further validate our findings, we used the associations identified in the GP2 

Bayesian network to perform Fisher exact testing and found the conditional dependence associations to be 

highly statistically significant, with all associations having a p-value of 0.001 or less. (Table 5)  Coupling 

histological criteria with transcript expression in the context of a cross-validated classification model 

provided a powerful predictor of allograft pathology.  The probability of TG with a C4d grade of 3 alone 

is 81.25% (Figure 4B; 4D) while, not unexpectedly, the probability of SF with a C4d grade of 0 is 83.9% 

(Figure 4D). However, when coupled to increased expression of VCAM-1 (≥1.96 fold), MMP-9 (≥5.34 

fold), MMP-7 (≥2.77 fold), and LAMC2 (>2.19 fold) the probability of TG increased to 99.67% (Figure 

4C). Furthermore, with increased expression of only LAMC2 (>2.19 fold) and MMP-7 (>2.77 fold), the 

probability of TG is 95.6%; with decreased expression of LAMC2 (<0.52 fold) and MMP-7 (<1.04 fold), 

the probability of SF is 99.1% (Figure 4E). 

 

Bayesian model validation for transcript network prediction of allograft pathology 

Using 10-fold cross-validation analysis, both models for GP1 and GP2 estimated allograft pathology. GP1 

estimated TG with an AUC (95% CI) of 0.875 (0.675-0.999), p=0.004 and sensitivity, specificity, positive 

predictive value, and negative predictive value of 85.7%, 87.5%, 92.3%,and 77.8%, respectively; GP2 
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estimated TG with an AUC (95% CI) of 0.859 (0.754-0.963), p<0.001and sensitivity, specificity, positive 

predictive value, and negative predictive value of 80.0%, 84.4%, 76.2%, and 87.1%, respectively. 

 

Of interest is the models ability to predict outcome in sequential biopsies.  Thirteen cross-validation 

models were generated using the same discretization as the overall Bayesian network (Table 6).  For each 

training dataset, a single patient’s multiple biopsies were removed.  The removed patient data were then 

used to test the new validation model.  This cohort of patients with multiple biopsies included 28 biopsies 

from 13 patients, of which 4 biopsies (2 patients) were diagnosed with TG and 24 biopsies were 

diagnosed as SF.  A comparison of resulting model predictions to pathological findings yields one patient 

with one biopsy discrepantly identified, while the other biopsy had confirmatory identification; one 

patient with both biopsies discrepantly identified; two patients with both of their biopsies confirmed as 

TG; and nine patients with each of their biopsies confirmed as SF. 

 

The analysis of sequential renal graft biopsies yielded consistent transcript expression profiles within 

GP2.  Each biopsy, when classified by the same Bayesian network, exhibited probability of diagnosis 

similar to its subsequent, matched sample with the exception of two biopsies from one graft, patient 002-

003.  An additional point is that two of the three SF biopsies that were discrepantly classified as TG by 

the model were from the same graft, patient 002-014, and were in agreement with each other with a 

probability greater than 0.84.   

 

DISCUSSION 
 

In this study we attempted to characterize a panel of genes associated with TG using a novel machine-

learning methodology producing Bayesian networks to evaluate a systems biology approach in 

identifying novel biomarkers of TG. As such, we have demonstrated that multiple gene transcripts 

associated with immune function and fibrosis are transcriptionally active in TG, have statistically 

significant association with outcome, and may have the potential to be highly predictive of abnormal 
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outcome. We believe that with further development and prospective clinical validation, this integrated 

approach will enable further understanding of this disease process and allow for the development of a 

clinically relevant diagnostic of allograft pathology and ultimately provide biomarkers for use in clinical 

trials.  

 

When examined using traditional statistics, gene transcripts related to T-cell activation, effector function, 

costimulation, chemotaxis, and endothelial activation (Gene Panel 1) are all up-regulated in our recipients 

with TG (Figure 1). Furthermore, transcripts associated with epithelial-mesenchymal transformation, 

cytoskeleton structure, and growth regulation (Gene Panel 2) are also up-regulated. While it is evident 

that the transcriptional profile within biopsies histologically identified as positive for TG is markedly 

different from a stable functioning allograft, these differences indicate greater general immune activation 

without identifying specific pathways. Such findings have not been previously reported as many studies 

of TG have focused on histologic changes and association with alloantibody
18

. As the comprehensive 

interpretation of such datasets has remained difficult, we believe that our novel approach provides a 

method for the generation of new hypothetical pathways. 

 

Methods to analyze complex, heterogeneous data sets incorporating the relationships between clinical, 

histological, and transcriptional variables have enormous utility in clinical research and application. In 

order to address the inherent analytical complexity of biomarker datasets, we have utilized machine-

learned Bayesian network analysis.  Bayesian theory relates the conditional independence of known 

events in order to compute posterior, or unknown, probabilities.
19, 20

 Here, we have applied measured 

transcriptional data in order to determine the posterior probability of allograft pathology. While there are 

many analytical technologies available, we have focused on machine learning because of its inherent 

ability to address high-dimensionality multivariate data. We selected Bayesian networks, specifically, 

because the graphical models produced are transparent and intuitive, which allows the researcher to more 
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readily identify underlying mechanisms. This approach enhances many classical statistical analyses and 

has been employed for diagnostic and prognostic applications in oncology
21, 22

 and cardiology.
23, 24

 

 

When analyzed using Bayesian analysis alone, several conditional relationships become apparent within 

the transcript profiles. Specifically, ICAM-1, IL-10, CCL3, and CD86 are all conditionally related to 

outcome when modeling gene expression related to immune function (GP1). Additionally, VCAM-1, 

MMP-9, MMP-7, and LAMC2 are conditionally related to allograft pathology when analyzed with 

respect to fibrosis (GP2). As TG is rarely an isolated pathologic lesion,
8
 the association of IL-10, CCL3, 

and CD86, although not histologically evident, may represent transcriptional overlay of cell-mediated 

inflammatory changes within the allograft.
25

 Endothelial activation has been proposed as a mechanism for 

the pathogenesis of TG,
9
 and interestingly, the machine-learned Bayesian network, GP1, associated two 

endothelial adhesion molecules, ICAM-1 and VCAM-1, directly to allograft pathology. TG is also 

morphologically characterized by duplication of the basement membrane, and appropriately, laminin 

(LAMC2), a major component of basement membrane, was also identified as a vital transcriptional 

indicator. 

 

While many of these associations uncovered by the Bayesian model are novel, several well-established 

relationships support that such an approach has biologic relevance. The relationship between pathology 

and cell signaling (chemokine expression), cell trafficking (adhesion molecule expression) and tissue 

remodeling (MMP expression) as demonstrated by this analysis is supported by current models of TG. 
26-

29
 
30

 
9
 TG is believed to be secondary to binding of donor specific antibodies to endothelium with resulting 

stimulation and recruiting of secondary mediators leading to an inflammatory response. 
9
 
30

This 

inflammatory response and subsequent tissue injury has been associated with chemokine, adhesion 

molecule and MMP expression. 
26-28

 
14, 29, 31

  Additionally, adhesion molecule expression has been shown 

to be associated with both chronic disease and stable function in renal transplant recipients. 
32

 As 

demonstrated in our model, alteration of chemokine expression has been linked to costimulatatory 
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molecules (CD28,40L,80,86) and IL-10 has been demonstrated to be elevated in allografts with stable 

function. 
26, 33

 
34-36

 Finally, the development of TG and Cd4 expression has also been well characterized. 
37

 

38
 
9
 Thus, our preliminary data suggest that machine-learned Bayesian models may elucidate critical 

pathways related to the allograft pathology within transcriptional datasets.  

 

While transcriptional analyses of renal transplant biopsies have been extensively reported, 
11, 39, 40

 this is 

the first report of an integrated panel with a graphical tool to define conditional relationships and 

potentially assist the clinician in prediction of transplant-specific diagnosis. As such, the ability to analyze 

several biomarkers at once offers several advantages over individual endpoints. This allows for the 

consideration of temporal changes individual biomarker levels vary with time during the disease 

process.
41

 Further, it allows for the capture of feedback loops and inter-biomarker dependencies to 

improve sensitivity and specificity. Efforts in oncology and HIV have already introduced personalized 

medicine into clinical reality.
42

 In order for a biomarker, or panel of biomarkers, to reach clinical utility as 

part of a personalized medicine approach, it would ideally meet the following criteria: inexpensive, easy 

and rapid quantification, detectable early in the course of the disease process, repeatable, and have a high 

degree of sensitivity and specificity.
43, 44

 Based on our preliminary data, we believe that our panel of 

biomarkers, once prospectively clinically validated, may address these goals for the diagnosis of 

transplant pathology. PCR based assays, such as used herein, offer the potential of cost effectiveness, 

repeatability, and rapidity.
45

 Additionally, given the relatively long-term survival of renal allografts, 

prospective application of such models to transplant biopsies may allow for early diagnosis, therapy 

alterations, and guidance in clinical trials.
2, 46

  

 

Admittedly, this study is limited by the current dataset size and disease process. The dataset employed 

included patients with several different immunosuppressant approaches. While this reduces uniformity, 

we feel that it enhanced model robustness and favored broad utilization as the strategies used represent 

current standard practices. TG pathology is evolving, so there are limited treatment options. This limits 
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the ability to judge the effectiveness of a biomarker panel in addressing a clinical disease process; 

however, the ability to predict SF as described does offer the ability to affect therapeutic decisions. 

Patients quantitatively classified by the network as SF, as opposed to ongoing pathology, may benefit 

from immunosuppression weaning rather than continuous therapy, which has inherent toxicity, infection, 

and malignancy risks. Most importantly, the retrospective nature of this study does not allow for robust 

validation of the predictive models developed from the relationships derived from the transcriptional 

datasets. This will require additional prospective analysis with models such as described. Additionally, 

the small number of cases available for analysis renders the disease specific conclusions not definitive 

and requires further analysis. This is due to a lack of processed biopsies prior to the identification of TG 

via histologic findings. Therefore, given that many of the relationships uncovered by the model appear to 

be supported by other investigators, we believe that future analysis would be able to validate the current 

model and develop similar models for disease states where know therapeutic options exist, such as acute 

or antibody mediated rejection   

 

In renal transplant recipients, we have demonstrated the ability to apply machine-learned Bayesian 

analysis of allograft biopsy gene expression to establish models of interdependent relationships and 

pathologic probabilities. The machine learning approach, which highlighted relationships not readily 

apparent with other analytical methods, provides a overview for biomarker analysis of stable function 

allograft as opposed to one exhibiting transplant glomerulopathy. We plan to continue this work in an 

effort to validate our biomarker panel for use as surrogate endpoints of clinical trials and clinical decision-

making. As such, this effort signifies the introduction of personalized medicine in the realm of organ 

transplantation.  
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FIGURES 

 

Figure 1. Transcriptional profile comparing stable function and transplant glomerulopathy allografts 

(GP1 and GP2). Transcript expression levels that were statistically different between SF (open bars) and 

TG (closed bars) allografts are shown (p<0.05). TG allografts showed significantly greater expression of 

transcripts related to A) T-cell activation and effector function, B) costimulatory molecules, C) 

chemotaxis, D) inflammatory cytokines and endothelial activation, E) epithelial-mesenchymal 

transformation, F) cytoskeleton structure, and G) growth factors and regulators of tissue remodeling when 

compared with SF allografts. Results are mean n-fold expression relative to normal, non-transplanted 

kidneys and depicted on a logarithmic scale. Error bars represent standard error of the mean (SEM). 

 

Figure 2. Bayesian transcript network (GP1) and relationship to allograft pathology. A) The Bayesian 

transcript network structure of GP1 as established by the iterative modeling methods. The relative (n-fold) 

expression is represented for selected transcripts in three equal-area bins with associated probability 

distributions (blue bar) as predicted by the Bayesian model. In this model, ICAM-1, IL-10, CCL3, and 

CD86 were critically related to the allograft pathology variable ‘Dx’ (dashed box) as indicated by their 

adjacent location in the network. Multiple additional cytokine, chemokine, and costimulatory transcripts 

were also related to allograft pathology but not closely as indicated by their distance from the Dx variable. 

Transcripts not related to allograft pathology are outside of the network (BCL2, BAX, SKI, CSF1). B) 

With a SF allograft (set evidence is indicated by a black bar), the expression of multiple transcripts are 

decreased within the network, where decreased expression is represented in green and increased 

expression in red. The degree of shading represents the strength of the transcript relationship to the 

outcome, where darker is a stronger and lighter a weaker relationship. C) In an allograft with TG (black 

bar), the expression of the gene transcripts are increased in the Bayesian network.  
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Figure 3. Bayesian network probability analysis of allograft pathology based on transcript expression. A) 

With increased expression of ICAM-1 (≥1.84 fold), IL-10 (≥16.9 fold), and CCL3 (≥3.15 fold) (black 

bars) the probability of a TG allograft (dashed box) increases to 99.67%. B) With increased expression 

(>8.89 fold) of the costimulatory molecule CD86 (black bar), multiple related transcripts are also 

increased. For example, with increased expression of CD86 the probability of increased expression (>28.5 

fold) of CD40L is 81.12%. In addition, the probability of a TG allograft (dashed box) also increased to 

80.61%. Black bars indicate set evidence while blue bars indicate probability distributions within each 

graph. 

 

Figure 4. Bayesian transcript network (GP2) and relationship to allograft pathology. A) In this model, 

VCAM-1, MMP-9, MMP-7, and LAMC2 are critically related to the allograft pathology (dashed box). In 

addition, the Banff C4d grade was included in this dataset and is also critically related to allograft 

pathology. The solid box indicates porting of network shown in panels B and C. B) With a Banff C4d 

grade of 3 (black bar), the probability of a TG allograft (dashed box) is 81.25%. C) However, with 

increased expression of VCAM-1 (≥1.96 fold), MMP-9 (≥5.34 fold), MMP-7 (≥2.77 fold), and LAMC2 

(>2.19 fold) (black bars) the probability of a TG allograft (dashed box) increases to 99.67%. D) Bayesian 

prediction of allograft pathology based on C4d deposition. E) Bayesian prediction of allograft pathology 

based on combinations of LAMC2 and MMP7 expression levels.  In panels D and E, “Probability of 

Case” reflects the occurrence rate of specified combination within the dataset.  Low (green) to high (red) 

values are color coded.  
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TABLES 

 

Table 1: Gene transcript targets 

 

Gene Panel 1 Gene Panel 2 

BAX EDN1 ACTA2 MMP9 

BCL2 FASLG ACTN4 NPHS1 

C3 FOXP3 AFAP NPHS2 

CCL2 GATA3 AGRN PDGFB 

CCL3 GNLY ANGPT2 S100A4 

CCL5 GREM1 BMP7 SERPINE1 

CCR1 GZMB CD2AP SERPINH1 

CCR5 HLA-B1/3 CDH1 SMAD3 

CD28 ICAM1 CDH3 SMAD7 

CD3E ICOS COL1A1 SPARC 

CD4 IFNG COL3A1 SPP1 

CD40 IL10 COL4A2 TGFB1 

CD40LG IL6 CTGF THBS1 

CD80 IL8 CTNNB1 TIMP1 

CD86 MS4A1 FAT TIMP2 

CSF1 PDCD1 FGF2 TIMP3 

CTLA4 PRF1 FN1 TIMP4 

CX3CL1 SKI GREM1 TJP1 

CX3CR1 TBX21 HSPG2 TNC 

CXCL10 TNF IGF1 VCAM1 

CXCL11   LAMC2 VEGF 

CXCL9   MMP2 VIM 

CXCR3   MMP7   
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Table 2: Patient characteristics 

 

Variable SF TG p-value 

Number of patients 19 18  

Recipient age (years) 38 ±14 42 ±14 NS
1
 

Pre-transplant PRA peak 1.1 ±3.0 5.2 ±11.8 NS
1
 

Donor age (years) 34 ±10 41 ±13 NS
1
 

Donor type (%) 

     Living related 

     Living unrelated 

     Deceased 

 

5 (26) 

9 (48) 

5 (26) 

 

9 (50) 

4 (22) 

5 (28) 

NS
2
 

HLA mismatch 3.6 ±1.7 3.4 ±1.5 NS
1
 

Post-transplant DSA (%) 1 (5) 10 (56) 0.001
3
 

First transplant (%) 18 (95) 15 (83) NS
3
 

Death-censored graft loss(%) 0 4 (22) 0.021
3
 

Death with functioning graft (%) 0 3 (8) NS
3
 

Follow-up months 65.3 ±23.0 70.3 ±19.1 NS
1
 

1
Student t-test; 

2
Chi square; 

3
Fisher exact test 
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Table 3: Biopsy characteristics 

 

 SF TG p-value 

Number of biopsies 32 20  

Time from transplant (months) 23.31 ±19.3 32.7 ±16.3 NS
1
 

Creatinine (at time of biopsy) 1.3 ±0.3 2.5 ±1.1 <0.001
1
 

Biopsy for cause (%) 

     Minimal changes 

     Borderline rejection 

     Acute humoral rejection 

     Clinical toxicity 

     Recurrent MPGN 

     IF/TA 

 

2 (6) 

2 

0 

0 

0 

0 

0 

9 (45) 

0 

2 

1 

1 

2 

3 

0.001
2
 

C4d grade 0.6 ±0.9  1.6 ±1.1  0.013
1
 

CG grade 0 2.7 ±0.5 <0.001
1
 

IF/TA grade 0 1.4 ±1.2 <0.001
1
 

1
Student t-test; 

2
Chi squared 
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Table 4: Fisher exact test of Bayesian associations in GP1 

 

Association Pairs p-value 
Dx ICAM1 <0.001 

Dx IL10 <0.001 

Dx CCL3 <0.001 

CCL3 CD86 <0.001 

CD86 CCL2 0.010 

CD86 CXCL11 <0.001 

CD86 CD40LG <0.001 

CD40LG IFNG 0.004 

CD40LG CD28 <0.001 

CXCL11 CD80 <0.001 

CD80 CXCL10 0.001 

CD80 GNLY <0.001 

GNLY PRF1 0.001 
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Table 5: Fisher exact test of Bayesian associations in GP2 

 

Association Pairs p-value 

Dx VCAM1 <0.001 

Dx MMP9 <0.001 

Dx Banff.C4d 0.001 

Dx MMP7 <0.001 

Dx LAMC2 <0.001 
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Table 6: Sequential Biopsy Validation by Patient  

Patient 

Number 

Days 

Post Tx Dx 

Probability 

of SF 

Probability 

of TG 

1158 SF 0.038 0.962 
002-003 

1830 SF 0.977 0.023 

170 SF 0.153 0.847 
002-014 

338 SF 0.024 0.976 

177 SF 0.985 0.015 

1094 SF 0.985 0.015 002-017 

2088 SF 0.999 0.001 

366 SF 0.958 0.042 
002-018 

1099 SF 0.997 0.003 

1092 TG 0.119 0.881 
002-021 

1281 TG 0.002 0.998 

1146 SF 0.646 0.354 
002-023 

1840 SF 0.961 0.039 

381 SF 0.971 0.029 

1099 SF 1.000 0.000 002-024 

1721 SF 0.791 0.209 

194 SF 0.998 0.002 
002-031 

368 SF 0.726 0.274 

1287 TG 0.013 0.987 
002-033 

1078 TG 0.003 0.997 

198 SF 0.999 0.001 
002-035 

363 SF 0.969 0.031 

186 SF 0.810 0.190 
002-044 

371 SF 0.999 0.001 

177 SF 0.991 0.009 
002-047 

359 SF 0.997 0.003 

168 SF 0.998 0.002 
002-048 

421 SF 0.980 0.020 

     

Tx, transplant; Dx, diagnosis as defined in Methods; SF, stable 

function; TG, transplant glomerulopathy; probability greater than 

0.500 was considered a positive test. 
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Figure 1 Bayesian Modeling of TG Gene Expression








